

Conference: Interdisciplinary Congress of Renewable Energies, Industrial Maintenance, Mechatronics

and Information Technology

BOOKLET

RENIECYT - LATINDEX - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - E-Revistas - Google Scholar DOI - REDIB - Mendeley - DIALNET - ROAD - ORCID

Title: Comparaciones ópticas y estructurales de las películas de óxido de silicio rico en silicio (SRO) depositadas por las técnicas LPCVD y HFCVD.

Authors: MARTÍNEZ-HERNÁNDEZ, Haydee Patricia, LUNA-LÓPEZ, José Alberto, LUNA-FLORES, Adán y HERNÁNDEZ-DE LA LUZ, José Álvaro David.

Editorial label ECORFAN: 607-8695 BCIERMMI Control Number: 2019-331 BCIERMMI Classification (2019): 241019-331

Pages: 13 RNA: 03-2010-032610115700-14

ECORFAN-México, S.C.			Holdings	
143 – 50 Itzopan Street		Mexico	Colombia	Guatemala
La Florida, Ecatepec Municipality				
Mexico State, 55120 Zipcode		Bolivia	Cameroon	Democratic
Phone: +52 55 6 59 2296	www.ecorfan.org	Spain		Popublic
Skype: ecorfan-mexico.s.c.		Spain	El Salvador	Republic
E-mail: contacto@ecorfan.org		Ecuador	Taiwan	of Congo
Facebook: ECORFAN-México S. C.		_		
Twitter: @EcorfonC		Peru	Paraguay	Nicaragua

TECNICA LPCVD

Reactor horizontal LPCVD

Introducción

Técnica HFCVD

Metodología

TECNICA LPCVD

Fabricación de las películas de SRO

ECORFAN®

Selección del material

Oblea de silicio de 4" tipo P, orientación 100, baja resistividad 1-5 Ω -cm, espesor de 550 micras.

P	C	V	D	

- 10 Ro=10 sTT o cTT
- 25 Ro=25 sTT o cTT

Proceso de limpieza CMOS

Desengrasado Solución H₂O:HF 7:1. 10 s. 3 Enjuagues Agua D.I. RCA 1 17min. RCA 2 17 min

Depósitos del SRO Ro=10 y Ro=25

Depósito de SRO: Temperatura: 736°C Presión SiH₄= 0.92 torr, F= 5.1 slpm. Ro=10 Presión N₂0= 0.31 torr, F=3.4 slpm. Tiempo de depósito:17 minutos. Ro=25 Presión N₂0= 0.76 torr, F=4 slpm. Tiempo de depósito: 30.5 minutos

Tratamiento térmico

Temperatura : 1100°C Flujo de Nitrógeno: 150 s.s. Tiempo de depósito: 180 mins

Caracterizaciones

Ópticas: Elipsometría Nula FTIR Fotoluminiscencia

Estructurales:

SEM HRTEM

TECNICA HFCVD

Fabricación de las películas SRO

Selección del material

Oblea de silicio de 2" tipo P, orientación 100, baja resistividad 1-5 Ω , espesor de 300 micras.

HFCVD					
25	F=25	SRO ₂₅			
100	F=100	SRO ₁₀₀			

Proceso de limpieza CMOS

Desengrasado Solución H₂O:HF 7:1. 10 s. 3 Enjuagues Agua D.I. RCA 1 17min. RCA 2 17 min

Depósitos del SRO SRO₂₅ y SRO₁₀₀

Depósito de SRO: Temp.: 650°C Dist. 8mm. 3 minutos

 F_{H} = de 25 sccm F_{H} = de 100 sccm

Tratamiento térmico

Temperatura : 1100°C Flujo de Nitrógeno Tiempo de depósito: 60 mins

Caracterizaciones

Ópticas: Elipsometría Nula FTIR Fotoluminiscencia **Estructurales:** SEM

HRTEM

5

Resultados y discusión

Caracterizaciones SRO-LPCVD vs SRO-HFCVD

Ópticas:

- Elipsometría Nula
- **F**TIR
- ✓ Fotoluminiscencia

Espectrofotómetro Bruker Vector 22 con fuente de infrarrojo

Ópticas:

- ✓ Elipsometría Nula
- ✓ FTIR
- ✓ Fotoluminiscencia

Modos de vibración de los espectros de FTIR del SiO₂.

	Antes del tratamiento térmico			sio	Después del tratamiento térmico				
Modos de vibración	R ₀ =25	R ₀ =10	SRO ₂₅	SRO ₁₀₀	3102	R ₀ =25	R ₀ =10	SRO ₂₅	SRO ₁₀₀
	Numero de onda cm ⁻¹								
(1) Si-O-Si en SiO ₂ Balanceo (R) [3,6]	455	439	449	449	458	459	466	459	458
(2) Si-H Meneo (W) [4,6]	609	609	609	609		669	669	612	612
(3) Si-O-Si en SiO ₂ Doblamiento (B) [3,5,6]	809	809	881	881	812	818	818	808	808
(4) Si-H Doblamiento (B) [3.6]	938	936	-	-		942	943	- (- (
(5) Si-O-Si en SiO ₂ Estiramiento en fase (S)	1061	1065	1070	1062	1002	1092	1000	1096	1002
[3,4,6]	1001	1003	1070	1002	1002	1002	1000	1080	1005
(6)Si-O-Si Estiramiento fuera de fase (a-S)	1172	1160	1174	1171	1177	1101	1105	1227	1240
[3,6]	11/5	1100	11/4		11//	1191	1195		1240
(7)Si-H Estiramiento(S) [4,5]	2261	2261				2313	2313		

discusión

Resultados y

Caracterizaciones SRO-LPCVD vs SRO-HFCVD

Ópticas:

 \checkmark

- **ECORFAN®**
- Elipsometría Nula
- ✓ FTIR

Fotoluminiscencia

Ópticas:

- ✓ Elipsometría Nula
- ✓ FTIR
- ✓ Fotoluminiscencia

Posición	Mecanismos de emisión				
Dosdo 1 77 o 1 24 oV Infrarojo	(CLI) Centros Luminiscentes localizados en la interfaces de				
	nc-Si/SiO ₂				
Desde 1 99 a 1 77 eV Poio	(QC) Efecto de confinamiento cuántico con la interacción				
	en la interfaz de los nc-Siy la matriz de óxido.				
Dosdo 2 2 a 1 99 oV Marania y rojo	(NBOHC) Centros huecos de oxígeno no enlazado y				
Desue 2.2 a 1.99 ev Naralija y lojo	centros E´=Si-O•O=Si+				
Desde 2.51 a 2.07 eV Verde y	$(E\delta')$ Vacancias de oxígeno cargados positivamente				
amarillo					
Desde 2.72 a 2.51 eV Azul	(NOV) (O ≡Si-Si ≡O) Vacancias neutrales de oxigeno				
Desde 3.17 a 2.72 eV Violeta	(WOB) Enlaces débiles de oxigeno				

Estructurales: ✓ SEM ✓ HRTEM

Técnica	Película	Diametro de Ncs-Si CTT
ę	R0=10	4.15±0.85
LPC	R0=25	5.05±0.25
DV	SRO25	3.90±0.10
HFG	SRO100	4.14±0.14

(TEM) JEM-ARM200F

Conclusiones

Comparación de las propiedades ópticas y estructurales de las películas SRO-LPCVD y SRO-HFCVD.

Elipsometría nula y SEM

- ✓ Las películas SRO-LPCVD son más delgadas que las películas SRO-HFCVD.
- ✓ Las películas SRO-LPCVD tienen mas exceso de silicio que las películas SRO-HFCVD.

FTIR

✓ Las películas-HFCVD presentan mayor intensidad de absorción y cantidad de defectos relacionados con el oxígeno-hidrógeno STT que las películas-LPCVD.

Fotoluminscencia

- ✓ Las películas SRO-HFCVD tienen mayor intensidad FL que las películas-LPCVD.
- ✓ Ambas películas SRO-HFCVD y SRO-LPCVD sTT presentan un pico en el violeta (390-455 nm); enlaces débiles de oxígeno ((WOB)
- ✓ Ambas películas SRO-HFCVD y SRO-LPCVD cTT presentan picos intensos el roja (622 y 780 nm), debido a NBOHC, Centros E' ≡Si−O•O≡Si+ y Efectos de CQ con interacción de la interface de los nc-Si y la matriz de óxido y CLI de nc-Si/SiO₂

HRTEM

✓ Así mismo en las cuatro películas cTT todas presentaron ncs-Si de un tamaño en 3 y 5 nm.

[1] Canham, L. T. (1990). Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers.

[2 Hsuan-Ta Wu, et al., (2019) Al-Doped ZnO/Silicon-rich Oxide Superlattices with High Room-Temperature Thermoelectric Figure of Merit.

[3] Luna-López, J. A., et al., (2010). FTIR, AFM and PL properties of thin SiOx films deposited by HFCVD. Materials Science and Engineering: B, 174(1-3), 88-92.

[4] Mingming Li *et al.*, (2019). The evolution of PL properties of hydrogenated Si-rich silicon

carbide/amorphous carbon nano-multilayer films grown by PECVD

[5] A.O. Zamchiy, et al., (2018). Effect of annealing in oxidizing atmosphere on optical and structural properties of silicon suboxide thin films obtained.

[6] J.R. Ramos-Serrano, et al., (2019). Luminescent silicon oxycarbide thin films obtained with monomethylsilane by hot-wire chemical vapor deposition.

Acknowledgements

This work has been partially supported by CONACyT-CB-255062 and VIEP-LULJ-EXC-2019. The authors acknowledge CIDS, INAOE (Pablo Alarcón, V. Aca Aca, A. Hernández Flores, A. Itzmoyotl Toxqui and I. Juárez Ramírez) ICUAP Dr. Enrique Gonzalez Vergara, Mtra. María Yadira Rosas Bravo.

© ECORFAN-Mexico, S.C.

No part of this document covered by the Federal Copyright Law may be reproduced, transmitted or used in any form or medium, whether graphic, electronic or mechanical, including but not limited to the following: Citations in articles and comments Bibliographical, compilation of radio or electronic journalistic data. For the effects of articles 13, 162,163 fraction I, 164 fraction I, 168, 169,209 fraction III and other relative of the Federal Law of Copyright. Violations: Be forced to prosecute under Mexican copyright law. The use of general descriptive names, registered names, trademarks, in this publication do not imply, uniformly in the absence of a specific statement, that such names are exempt from the relevant protector in laws and regulations of Mexico and therefore free for General use of the international scientific community. BCIERMMI is part of the media of ECORFAN-Mexico, S.C., E: 94-443.F: 008- (www.ecorfan.org/ booklets)